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DEFINITIONS AND OVERVIEW
Wearable technology, commonly referred to as “wearables,” rep-
resents a broad category of electronic, hands-free devices that are 
used for the measurement of physiologic signals, diagnosis of phys-
iologic states or medical conditions, and treatment of disease. Eye-
glasses, developed in 13th century, are considered to be the first 
wearable device. The contemporary definition refers to devices with 
microprocessors and connectivity to smartphones or a network. Col-
loquially, the term “wearables” more typically refers to technologies 
that can be directly acquired by the patient or consumer (“consumer-
facing”) and do not require interaction with the health care system 
for access. These devices are regarded as an example of the “Internet 
of Things.”1

Wrist-worn wearables comprise almost half of the United States 
and international segments of the wearables market. Early wearables 
consisted of wristbands with dedicated functions for assessing the 
pulse rate and were geared toward fitness and wellness consumer 
markets. With advances in miniaturization, sensor technology, battery 
longevity, and lower manufacturing costs, these devices have become 
more complex and packed with a wide range of sensors. Contempo-
rary smartwatches have the sensor capabilities to detect pulse and 
oxygen saturation (photoplethysmography [PPG]), movement and 
activity (accelerometer and gyroscope), distance and location (GPS), 
and sound (microphone) and record an electrocardiogram (ECG). 
Applications of machine learning and other forms of signal processing 
to streams of sensor data have enabled assessment of more complex 
parameters including sleep, 6-minute walk distance, irregular rhythms 
such as atrial fibrillation, fall detection, heart rate variability, sympa-
thetic tone, and emotional health.

Wearable devices are part of a larger concept in medicine called, 
“digital health,” which is a broad term that describes the application 
of digital information or data and communications technologies to 
improve patient health, population health, and care delivery. Digital 
health is a multidisciplinary domain that includes elements of mobile 
health, health information technology, wireless or connected health, 
big data, wearable technologies, telemedicine and remote care, pre-
cision and personalized medicine, genetics, and artificial intelligence. 
Digital health aims to improve all domains of medical care, including 
disease prevention, prediction, diagnosis, and treatment. Digital health 
and wearable technologies also offer solutions to improve enrollment 
and lower costs of clinical trials.

Cardiovascular disease has been a major focus of digital health 
for a variety of reasons. The sensors measure relevant physiologic 

parameters (heart rate, ECG), the prevalence and economic burden 
of disease is high, and evidence-based prevention and treatment thera-
pies exist for a wide variety of conditions. 

ACTIVITY AND HEART RATE TRACKING FOR 
GENERAL CARDIOVASCULAR WELLNESS
The first wearables entered the market in the consumer space for 
nonmedical use. In the 1970s and 1980s, calculator watches and 
portable music players first demonstrated the ability of placing 
microprocessors on compact and wearable devices. In 1987, digi-
tal hearing aids were released. In 1994, the first ECG-based smart-
watches were released as physician-prescribed event recorders  
(Fig. 12.1). In 2009, the first major clip-on wearable devices launched 
and measured step counts, walking distance, and activity using an 
accelerometer. In the mid 2000s, the field converged to developing 
wrist-worn devices that embedded more sensor types, including 
gyroscopes and PPG.

Accelerometers can measure linear acceleration. These sensors 
have long been used for activity tracking including in implantable 
pacemakers. However, accelerometers alone are unable to differ-
entiate type of activity. Gyroscopes sense rotation. Used together as 
an inertia measurement unit (IMU), the two sensors provide greater 
accuracy to classify gait (walking, running), exercise type, stair 
climbing, sleep, and even fall detection. IMUs are primarily deployed 
by smartwatch software for activity and exercise tracking. Built-in 
or smartphone-paired global positioning systems allow for more 
accurate estimations of distances traveled compared with pedome-
ter calculations. Accuracy of calorie expenditure estimation is less 
accurate.

Most wrist-worn wearable devices have heart rate tracking. PPG 
is an inexpensive optical measurement technique that can estimate 
relative changes in blood flow. A light source is aimed at the skin, typi-
cally underneath the face of the head of the fitness band or watch. An 
adjacent photodetector measures the reflected light, which can esti-
mate relative changes in blood volume. With continuous sampling, 
PPG can capture the cardiac cycle and estimate the pulse rate. The 
peak represents systole, the nadir represents diastole, and the differ-
ence approximates the relative pulse pressure. A dicrotic notch from 
aortic valve closure may also be detected. PPG can also measure oxy-
gen saturation via oximetry, although most consumer watches do not 
provide the user this information. The core function of PPG remains 
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measurement of pulse rate. To preserve battery life and accuracy, 
heart rate sampling is typically noncontinuous and often opportu-
nistic and will increase during exercise modes or with user-initiated 
measurement. On some watches, users may activate notifications for 
tachycardia and bradycardia during periods of inactivity (heart rate–
activity discordance). The accuracy of PPG-based pulse rate may vary 
slightly based on the hardware, software, skin color, movement, ecto-
pic beats, and heart rate (e.g., due to decreased ventricular filling in 
severe tachycardia). 

ATRIAL FIBRILLATION
Photoplethysmography Detection of  
Irregular Rhythm
Time series analysis of PPG-derived pulse assessment can identify pat-
terns in the pulse. Quantification of pulse rate variability or machine 
learning–based algorithms have been shown to successfully discrim-
inate between sinus rhythm and atrial fibrillation using a variety of 
approaches.2

Early approaches to identify atrial fibrillation were based on a 
conceptual framework similar to ambulatory ECG interpretation, 
which is to examine a 30-second interval of pulses. This was success-
fully performed with transillumination of the finger from a smart-
phone flashlight and detection by the adjacent camera.3 Eventually, 
the strategy was applied to watches. As the use cases expanded 
from fitness and wellness to diagnosis and disease management, 
these tools required greater regulatory oversight and clearance 
(Fig. 12.2). An early attempt using third-party software on the Apple 
Watch had low specificity and positive predictive value.4 Subse-
quent approaches for irregular pulse identification were developed 
for high specificity, using a probabilistic approach of confirma-
tory pulse checks over hours or days. An algorithm designed for 
the Apple Series 1, 2, and 3 watches (Apple Inc, Cupertino, CA)5 

intermittently and passively measures pulse over 1 minute to gen-
erate a beat-to-beat pulse tachogram (Fig. 12.3). If this tachogram 
meets irregularity criteria, then the algorithm temporarily increases 
the sampling frequency. If five out of six consecutive tachograms 
met irregularity criteria, then the algorithm notifies the user of an 
irregular rhythm. Therefore, unlike the classical ECG definition of 
AF, which requires a consecutive duration of only 30 seconds, this 
PPG-based algorithm is probabilistic, requiring multiple episodes to 
meet criteria (see Fig. 12.3), and is therefore considered less sensi-
tive, especially for very short AF episodes, but much more specific.

The Apple algorithm was tested at scale in a single-arm, unblinded, 
investigational device exemption study.6 Inclusion criteria included 
age ≥22, possession of compatible Apple watches and phones, no prior 
history of AF, and U.S. residency. Over an 8-month period between 2017 
and 2018, the study enrolled 419,297 U.S. participants. Overall 0.52% of 
participants received an irregular rhythm notification. Among 450 par-
ticipants with notifications who received ambulatory ECG patch mon-
itoring, AF was a detected on that patch in 34% (97.5% CI 29% to 39%). 
The positive predictive value for an irregular rhythm notification was 
0.84 (95% CI 0.76 to 0.92). Because only notified participants received 
“gold standard” ECG monitoring, the study was unable to assess sensi-
tivity or specificity.

Studies similar in design have been performed to test similar PPG-
based algorithms on other smartwatch platforms. The Huawei Heart 
Study enrolled 246,541 participants in China to evaluate a fitness band 
and smartwatch and had directionally similar results, although a lower 
proportion receiving notifications, possibly due to a younger popula-
tion or greater algorithm specificity.7 In May 2020, Fitbit launched its 
own study to evaluate an algorithm on their device platform with tar-
get enrollment of 100,000 participants (https://clinicaltrials.gov/ct2/
show/NCT04380415, accessed September 5, 2020).

Although these studies indicate the promise for undiagnosed AF 
detection in an at-risk population, the FDA views this class of algo-
rithms as prediagnostic tools, rather than serving as more definitive 
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FIGURE 12.1  Timeline of wearable devices. (From Vitatron International; BioTelemetry, Inc; Google; AliveCor. Screenshots reprinted with permission from Apple Inc. Heart-
Guide image courtesy of OMRON Healthcare, Inc.)
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Measurement

Active HR measurement
(smartphone camera)

Active irregular rhythm
(phone camera, accelerometer)

Passive irregular rhythm
notification

Ad hoc ECG

Blended HR-ECG model
(trained HR sensor)

Passive HR sampling
(every few seconds to minutes)

Notification threshold

Low or high

Normal or atrial fibrillation

Single vs. repeated
confirmation

Varies (FDA)
Normal sinus vs. atrial 

fibrillation

To prompt ECG

Low or high

Use case

Third-party solutions
No uptake

Third-party solutions
No uptake

Consumer-facing
FDA clearance as “prediagnostic”;

not traditional screening

Prediagnostic and
disease management

FDA clearance

Disease management
FDA clearance

Consumer experience
No FDA clearance

FIGURE 12.2  Evolution of consumer-facing photoplethysmography pulse measurement. (From Google, AliveCor. Screenshots reprinted with permission from Apple Inc.)

Photoplethysmography (PPG) signal

1250MS 783MS 920MS

Tachogram: Series of inter-peak PPG signal intervals

5/6 Irregular tachograms ��Irregular pulse notification
Individual tachograms

Regular
Irregular

FIGURE 12.3  Irregular pulse detection algorithm. (From Perez M, Mahaffey KW, Hedlin H, et al. Large-scale assessment of a smartwatch to identify atrial fibrillation. N Engl 
J Med. 2019;381[20]:1909–1917.)

diagnostic tests. On the Apple platform, consumers must opt in to enable 
these features on their watches. In doing so, they receive onboarding that 
includes education. Because the sensitivity of these tests is not known 
and because they are enabled by the user rather than by a clinician as a 
public health intervention, these tools do not meet the classical Wilson-
Jungner criteria for screening tests. Presently, there are no professional 
society or U.S. Preventative Services Task Force recommendations for 
their use for AF surveillance, screening, or diagnosis. 

Electrocardiogram
More recent smartwatch models (Apple Watch Series 4 or higher, Sam-
sung Galaxy Watch 3) have FDA-cleared single-lead ECG capability 
(see Fig. 12.1). The user actively records a 30-second lead I (right arm 
[−] to left arm [+]) ECG on the watch by pressing the crown with a fin-
ger of the hand opposite the hand with the watch body electrode. How-
ever, the first major smartphone-connected ECG was released in 2013 
(AliveCor, Mountain View, CA). The Kardia device has two electrodes 
(one for each hand) and communicates wirelessly to a smartphone. A 

new six-lead consumer version (Kardia 6L) is now available that uses 
the right leg for additional limb and derived ECG leads.

Consumer-based ECG devices entail substantial limitations. Com-
pared with medical 12-lead systems and patch-based ECG monitors, 
smartphone-connected and smartwatch ECG devices tend to have 
significantly more artifact. To counter this, aggressive filtering and base-
line drift correction may be applied, which may obscure important 
ECG features. For example, a smartwatch algorithm incorrectly labeled 
a tracing of atrial tachycardia as atrial fibrillation (Fig. 12.4). Careful 
review shows that atrial tachycardia P waves have been attenuated 
due to filtering, which was clearly present on the medical 12-lead ECG. 
However, ST changes during acute coronary syndromes as measured 
by the Apple Watch in all 12 lead positions have shown good agree-
ment with medical grade systems.8

Another major caveat is that consumer-based ECG systems also do 
not provide comprehensive prediagnostic information across a variety 
of rhythms compared with medical grade systems. Numerous exam-
ples of incorrect diagnosis, including of sustained ventricular arrhyth-
mias, have been documented. Moreover, a ventricular rate that is out 
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of range (<50 or >100) prevents automated ECG interpretation on the 
Apple Watch. 

HYPERTENSION
There are hundreds of smartphone applications that allow the user to 
enter his or her blood pressure and track it and other vital signs over 
time. However, smartwatch applications and hardware that enable the 
device to measure blood pressure are relatively new. There are many 
unregulated smartphone apps that provide a blood pressure measure-
ment based on pulse transit time derived from the PPG tracing. One such 
app has been found to be highly inaccurate, despite almost 150,000 paid 
downloads.9 Many smartwatches available on online retail stores claim 
to measure blood pressure but do not have FDA clearance.

One smartwatch with FDA clearance for blood pressure uses tradi-
tional oscillometric measurement by using an inflatable cuff on the 
watch for blood pressure measurement (Omron Healthcare, Kyoto, 
Japan) (see Fig. 12.1). This watch connects to smartphones for trans-
fer of information. A watch that uses PPG-derived pulse information 
to estimate blood pressure has received regulatory approval in South 
Korea (Samsung, South Korea) (https://news.samsung.com/global/sa
msung-launches-the-samsung-health-monitor-application-with-blood-
pressure-measurement, accessed September 7, 2020). The device’s arti-
ficial intelligence algorithm is trained and calibrated to an individual 
user’s cuff readings. After sufficient training, the algorithm can be used 
to directly estimate blood pressure from the PPG data. The device is not 
yet approved in the United States. 

CARDIAC REHABILITATION AND  
HEART FAILURE
Activity sensing and heart rate detection have been applied as mea-
surement tools for heart failure and cardiac rehabilitation. Smartphone-
based 6-minute walk assessments have shown high accuracy across a 
range of devices, applications, and disease states, including heart fail-
ure10 and peripheral arterial disease.11 Smart devices may have applica-
tion programing interfaces to access step counts and distance traveled 
recorded by the watch rather than needing to access the raw data to 
derive these counts. Behavioral science and gamification have been 
incorporated into digital cardiac rehabilitation platforms. Although 
telehealth cardiac rehabilitation has proven at least as effective as 
center-based rehabilitation,12 there remain relatively sparse random-
ized data on the efficacy of using mobile technology.13

In heart failure, mobile technology applications have focused on 
identifying patients at risk of heart failure and disease management 
(see also Chapter 11). Deep learning techniques applied to single- and 
multi-lead ECGs can identify systolic dysfunction with high discrimina-
tion (c-statistic 0.93),14 although this has not been deployed in practice 

at scale. A pragmatic trial is ongoing (NCT04000087). Sensor technol-
ogies to assess pulmonary congestion (thoracic impedance) and car-
diac filling and emptying (ballistocardiography, seismocardiography) 
appear feasible but require larger trials.15 Machine learning–based 
detection of obstructive hypertrophic cardiomyopathy using wearable-
derived PPG has shown high discrimination.16 

CARDIAC ARREST AND SUDDEN  
CARDIAC DEATH
Without reliable continuous blood pressure, ECG monitoring, or the 
ability to deliver therapy, treatment of cardiac arrest from a wearable 
sensor is challenging. Fall detection on wearable devices can be 
configured to call emergency medical services. Assessment of hemo-
dynamics or circulatory arrest, if accurate, could be used to trigger 
medical response and bystander cardiopulmonary resuscitation.17 

EVALUATION OF WEARABLE DATA  
AND NOTIFICATIONS
Ancillary Information to the History
In patients with symptoms concerning for arrhythmia, pulse rate data 
may be useful to correlate heart rate at time of symptoms, similar to 
ambulatory ECG monitoring (Fig. 12.5A). A patient can be asked by 
the clinician if they may view the data together on the patient’s phone. 
It is recommended that the phone be kept by the patient and that the 
clinician directs him or her to access the data. This method ensures 
transparency and also serves to teach patients to navigate their health 
information on their smartphone.

If tachycardia or bradycardia is found, the activity or exercise mea-
surement and time of day may provide useful clues as to the arrhyth-
mia trigger and reliability of the tracing (see Fig. 12.5B). Pulse rate data 
may also be useful to assess ventricular response in atrial fibrillation. 
However, PPG may significantly and unpredictably underestimate (or 
overestimate) ventricular rate, especially during rapid atrial fibrilla-
tion or in the presence of structural disease such as aortic stenosis. 
In patients with tachycardia during AF, only 15% of earlier generation 
Fitbit devices and 60% of Apple Watch readings were within 10 beats of 
the actual ventricular rate.18 The use of pulse rate data during syncope 
can be useful but must be interpreted with caution because a fall can 
create mechanical artifact that may create spurious readings. Patients 
with smart ECG devices can be counseled to immediately take an ECG 
if and when they have recurrent symptoms. 

Heart Rate and Rhythm Notifications
Based on the positive predictive value of 0.84, a smartwatch irregu-
lar rhythm notification in a patient with no prior history of AF must 

6s 7s 8s 9s

FIGURE 12.4  Atrial tachycardia misdiagnosed as atrial fibrillation due to filter attenuation. Careful observation of this Apple Watch electrocardiogram (ECG) rhythm strip 
identifies discrete organized atrial activity denoted by the solid arrows. The dashed arrows indicate atrial activity that appears attenuated due to filtering. A 12-lead ECG identified 
a macro-reentrant stable atrial tachycardia. Watch sampling was 513 Hz with 10 mm/mV gain and 25 mm/sec paper speed.
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be taken seriously (Table 12.1). Confirmation by an ECG is essen-
tial; the irregular rhythm notification alone is insufficient for 
clinical diagnosis. The notification should prompt the clinician 
to ask a series of questions in the history no different than for sub-
jective complaints: date, time, place, and context of what the patient 
was doing at the time of the notification. The patient should also be 
asked of prior notifications that were silenced or ignored. The smart-
phone app can also be used to collect more details and search for 
prior notifications.

In 25% of Apple Heart Study participants that received a noti-
fication, AF was present throughout the entire ambulatory ECG 
recording.6 Therefore, an ECG taken by the patient on their watch 
or smart device may, with clinician verification, provide an imme-
diate diagnosis (see Table 12.1). If AF is not present at the time of 
ECG, then ambulatory ECG monitoring of a minimum of 7 days and 
preferably 14 should be performed. If these two tests do not reveal 
AF, then consideration may be given for repeat ambulatory ECG 
monitoring or to counsel the patient to take an ECG if another noti-
fication is received. Irregular rhythm notification alone does 
not suffice to make a clinical diagnosis of AF without ECG 
confirmation. The feature is also not FDA cleared for use for AF 
disease management.

If non-AF arrhythmias are detected with ECG testing, then the clini-
cian should inquire about symptom-arrhythmia correlation because 
many of ambulatory ECG findings such as infrequent atrial or ventricu-
lar ectopy could be inconsequential (see Table 12.1). Frequent or sus-
tained non-AF rhythms could trigger irregular rhythm notifications. An 
appropriate work-up for these rhythms may be indicated.

Patients may also present with tachycardia or bradycardia notifica-
tions (see Table 12.1). On the Apple Watch, these are opt-in notifica-
tions where the user may set a specific threshold to be notified if the 
heart rate is greater than (default >120 beats/min) or less than (default 
<40 beats/min) specific rates while being inactive for a period of 10 
minutes. Again, clinical attention should be given to the context and 
history. Watching sports or a movie, for example, could trigger tachycar-
dia, and bradycardia during sleep may be normal. These features are 
not likely to detect exercise-induced or transient arrhythmias. 

Activity, Exercise, and Sleep
The movement tracking features may be useful to provide a general 
sense of baseline level of activity and exercise. However, automated 
exercise logging, step counts, and sleep can be inaccurate, and these 
data are used best together with a history and patient report of activity. 

LIMITATIONS
Despite the rapid innovation and incorporation of hardware and soft-
ware into consumer wearables, progress has been slow to develop 
these tools into durable, disease management solutions. Electronic 
health record (EHR) integration is not robust or widely available; 
patients often communicate with their doctors or care team with their 
wearable data by electronic mail or messaging. In contrast, remote 
monitoring of cardiac implantable electronic devices (pacemakers, 
defibrillators, heart failure sensors) have tailored clinical software 
applications, mature workflows, stable reimbursement, clinical trials, 
professional society guideline recommendations, and a career path for 
allied health professional education. 

THE FUTURE
Despite these limitations, rapid and sustained clinical adoption is likely. 
Large randomized trials that aim to evaluate hard outcomes are emerg-
ing. The HEARTLINE study (NCT04276441) aims to randomize 150,000 
persons age ≥65 years to a smartwatch with AF detection capabilities 
and a study app for digital health engagement. Outcomes include clin-
ical diagnosis of AF, anticoagulation adherence, and incidence of a 
composite cardiovascular outcome. Other studies are in various stages 
of development.

The introduction of new reimbursement codes in the United States 
for remote patient monitoring is expected to catalyze adoption by clini-
cians, practices, and health care systems. The dramatic post-pandemic 
shift to telehealth, including virtual visits and asynchronous care, has 
created new unmet needs for at-home complex cardiac diagnostics 

A B C
FIGURE 12.5  Pulse and activity data from a smart phone app. Data shown are pulse rate data in the Apple Health app on iPhone, which shows the pulse rate data sampled 
from the paired Apple Watch (Apple Inc, Cupertino, CA). A, Day level data show an abrupt rise in heart rate at 6 pm. B, Corresponding rise in activity (exercise), which is the likely 
cause of the tachycardia. C, Month level display of heart rates, which can be useful in the assessment of rate control of atrial fibrillation. (Screenshots reprinted with permission 
from Apple Inc.)
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and remote monitoring. In the future, sensor technologies may move 
away from a wearable framework and toward contactless sensing. Sen-
sors in the home may detect and differentiate changes in vital signs, 
cardiac rhythm, activity, habits, medication adherence, and psychomet-
rics for each household member. Behavioral incentives for good health 
may be embedded outside of traditional health care and insurance 
services and on to platform technologies in computing, retail, and 
social media. Low-cost, minimally invasive microsensors and microim-
plantables may also have a role where greater sensor fidelity is needed.
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TABLE 12.1  Management of Wearable and Smartwatch Pulse Notifications

For All Notifications

	•	 �Obtain a full detailed history for context (date, time, place, symptoms) surrounding the notification

	•	 �Ask the patient if you may view the data together on the patient’s smartphone or watch; it is recommended that the patient hold the phone while the 
clinician directs him or her to access the data if needed

	•	 �On the phone or watch, examine the heart rate, activity, and exercise data for useful clues (time of day, whether exercising, and heart rate before and after 
the notification)

	•	 �Ask if this is the first notification or if there were others. The notifications can usually be found on the notification history on the connected smartphone

	•	 �Determine if the patient’s watch has an ECG feature or if the patient may have other smartphone ECG devices

Tachycardia Notification Irregular Rhythm Notification Bradycardia Notification

	•	 �Several watch manufacturers can notify 
users of HR-activity discordance

	•	 �Algorithm will notify user if HR exceeds 
user-defined threshold (usually >100–
150 beats/min) for more than 10 min 
while not active (based on embedded 
accelerometer or gyroscope)

	•	 �Assess if heart rate is appropriate (stress, 
anxiety, pain, dehydration, pregnancy, 
systemic illness, fever, deconditioning). 
If appropriate sinus tachycardia, then no 
further arrhythmia evaluation may be 
needed

	•	 �Examine pulse and obtain a medical-
grade ECG

	•	 �Pursue appropriate diagnostic cardiac 
evaluation

	 •	 �Consider ambulatory ECG monitoring 
of 7–14 days or event recording of up 
to 30 days

	•	 �An irregular rhythm notification alone should not 
be used to make the diagnosis of AF without ECG 
confirmation

	•	 �The irregular rhythm notification feature is not 
cleared by the FDA for disease management or 
surveillance of established AF

	•	 �As of January 2021, this notification is only available 
in the United States on the Apple watch series 
of products. Other hardware may access similar 
algorithms via the use of third-party software.

	•	 �Determine if the patient has a history of documented 
arrhythmias that could explain these findings

	•	 �Ask and look for whether a smartwatch-based ECG 
was taken at or near the time of notification. Counsel 
patient to do this when a notification is received, 
even in the absence of symptoms.

	•	 �Examine pulse, and obtain a medical-grade ECG

	•	 �If AF is not present, then perform ambulatory ECG 
monitoring of 7–14 days

	 ○	� Consider repeat ECG monitoring based on clinical 
suspicion if initial test if negative

	 ○	� If non-AF rhythms are identified, then inquire 
about symptom-arrhythmia correlation as these 
may be inconsequential

	•	 �If arrhythmias are identified then pursue work-up 
with appropriate diagnostic evaluation

	•	 �Algorithm will notify user if HR is less than a user-
defined threshold (<40–50 beats/min) for more 
than 10 min

	•	 �Examine pulse and obtain a medical-grade ECG.
	 •	 �If there is sinus rhythm, then determine if 

response is normal and physiologic (high 
vagal tone) or secondary (medications, 
hypothyroidism, sleep apnea, other illnesses)

	 •	 �If rhythm is not sinus, then evaluate for 
structural heart disease and primary electrical 
disease

	 •	 �If symptoms are associated with bradycardia 
(presyncope, syncope, exercise intolerance), 
then consider ambulatory ECG monitoring and 
evaluation for structural heart disease

	 •	 �If there are no symptoms, then consider 
ambulatory ECG or diagnostic tests to look for 
chronotropic incompetence (exercise treadmill 
testing)

ECG, Electrocardiogram.

 


